3.7.37 \(\int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [637]

3.7.37.1 Optimal result
3.7.37.2 Mathematica [A] (verified)
3.7.37.3 Rubi [A] (verified)
3.7.37.4 Maple [B] (verified)
3.7.37.5 Fricas [C] (verification not implemented)
3.7.37.6 Sympy [F]
3.7.37.7 Maxima [F]
3.7.37.8 Giac [F]
3.7.37.9 Mupad [F(-1)]

3.7.37.1 Optimal result

Integrand size = 25, antiderivative size = 187 \[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 d \sqrt {a+b \sec (c+d x)}}+\frac {8 b E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

output
2/3*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(si 
n(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*s 
ec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*a*sin(d*x+c)*(a+b*sec(d*x+c)) 
^(1/2)/d/sec(d*x+c)^(1/2)+8/3*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1 
/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c 
))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)
 
3.7.37.2 Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.83 \[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a+b \sec (c+d x))^{3/2} \left (8 b (a+b) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+2 a (b+a \cos (c+d x)) \sin (c+d x)\right )}{3 d (b+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \]

input
Integrate[(a + b*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]
 
output
((a + b*Sec[c + d*x])^(3/2)*(8*b*(a + b)*Sqrt[(b + a*Cos[c + d*x])/(a + b) 
]*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + 2*(a^2 - b^2)*Sqrt[(b + a*Cos[c 
+ d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + 2*a*(b + a*Cos[c 
+ d*x])*Sin[c + d*x]))/(3*d*(b + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2))
 
3.7.37.3 Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.01, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4351, 25, 3042, 4523, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4351

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}-\frac {1}{3} \int -\frac {4 a b+\left (a^2+3 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} \int \frac {4 a b+\left (a^2+3 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {4 a b+\left (a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4523

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx+4 b \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+4 b \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 b \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{\sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 b \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 b \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{\sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 b \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{3} \left (\left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {1}{3} \left (\frac {\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{3} \left (\frac {\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{3} \left (\frac {2 \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}\)

input
Int[(a + b*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]
 
output
((2*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, 
(2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + (8*b*Ell 
ipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + 
a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]))/3 + (2*a*Sqrt[a + b*Sec[c + 
d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])
 

3.7.37.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4351
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(3/2), x_Symbol] :> Simp[a*Cot[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*C 
sc[e + f*x])^n/(f*n)), x] + Simp[1/(2*d*n)   Int[((d*Csc[e + f*x])^(n + 1)/ 
Sqrt[a + b*Csc[e + f*x]])*Simp[a*b*(2*n - 1) + 2*(b^2*n + a^2*(n + 1))*Csc[ 
e + f*x] + a*b*(2*n + 3)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f 
}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegersQ[2*n]
 

rule 4523
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d 
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[A/a   I 
nt[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b - a*B) 
/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ 
[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 
3.7.37.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1569\) vs. \(2(223)=446\).

Time = 5.30 (sec) , antiderivative size = 1570, normalized size of antiderivative = 8.40

method result size
default \(\text {Expression too large to display}\) \(1570\)

input
int((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
2/3/d/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+ 
c)^(3/2)/(cos(d*x+c)+1)*((1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*( 
1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x 
+c)),(-(a+b)/(a-b))^(1/2))*a^2*cos(d*x+c)-4*(1/(a+b)*(b+a*cos(d*x+c))/(cos 
(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*( 
-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)+3*(1/(cos(d*x 
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((( 
a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*cos(d 
*x+c)+4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)) 
^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b 
))^(1/2))*a*b*cos(d*x+c)-4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2) 
*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d 
*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*cos(d*x+c)+2*(1/(a+b)*(b+a*cos(d*x+c))/(c 
os(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)) 
,(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^2-8*(1/(a+b)*(b+a*cos(d* 
x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc 
(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b+6*(1/(cos(d*x+ 
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a 
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2+8*(1/( 
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/...
 
3.7.37.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 415, normalized size of antiderivative = 2.22 \[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 12 i \, \sqrt {2} a^{\frac {3}{2}} b {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 12 i \, \sqrt {2} a^{\frac {3}{2}} b {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \sqrt {2} {\left (-3 i \, a^{2} - i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (3 i \, a^{2} + i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )}{9 \, a d} \]

input
integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")
 
output
1/9*(6*a^2*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin( 
d*x + c) + 12*I*sqrt(2)*a^(3/2)*b*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2 
, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2 
, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 
 2*b)/a)) - 12*I*sqrt(2)*a^(3/2)*b*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^ 
2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^ 
2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) 
+ 2*b)/a)) + sqrt(2)*(-3*I*a^2 - I*b^2)*sqrt(a)*weierstrassPInverse(-4/3*( 
3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3* 
I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(3*I*a^2 + I*b^2)*sqrt(a)*weierstrass 
PInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*co 
s(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a))/(a*d)
 
3.7.37.6 Sympy [F]

\[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*sec(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)
 
output
Integral((a + b*sec(c + d*x))**(3/2)/sec(c + d*x)**(3/2), x)
 
3.7.37.7 Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)
 
3.7.37.8 Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)
 
3.7.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((a + b/cos(c + d*x))^(3/2)/(1/cos(c + d*x))^(3/2),x)
 
output
int((a + b/cos(c + d*x))^(3/2)/(1/cos(c + d*x))^(3/2), x)